STATISTICS (C) UNIT 1 TEST PAPER 4

1.	Thirty cards, marked with the even numbers from 2 to 60 inclusive, are shuffled and one card is								
	withdrawn at random and then replaced. The random variable <i>X</i> takes the value of the number								
	times this experiment must be repeated until a number greater than 50 appears.								
	What assumption must be made if the distribution of X is modelled by a geometric								
	distribution?	[1]							
	Making this modelling assumption, find(i) the expectation of X,								
	(ii) $P(X > 3)$.	[2]							

2. Nine houses in a village changed hands in 1990 and again in 2000. The selling prices in the two years, in thousands of pounds, are given in the table :

2	, 1		U								
	1990 price (£1000s)	135	210	156	174	188	165	143	90	251	
	2000 price (£1000s)	180	242	195	206	270	184	155	173	400	
Calculate Spearman's coefficient of rank correlation between the prices in the two years.										[5]	

3. The random variable X has the binomial distribution B(11, 0.76). Find

(i) E(<i>X</i>),	[1]
(ii) $P(X=7)$,	[2]
(iii) $P(X \ge 9)$.	[3]

4. Explain briefly why, for data grouped in unequal classes, the class with the highest frequency may not be the modal class. [2] In a histogram drawn to represent the annual incomes (in thousands of pounds) of 1000 families, the modal class was 15 - 20 (i.e. £x, where $15\ 000 < x < 20\ 000$), with frequency 300. The highest frequency in a class was 400, for the class 30 - 40, and the bar representing this class was 8 cm high. The total area under the histogram was 50 cm². Find the height and the width of the bar representing the modal class. [6] PMT

[1]

5. A group of 10 students obtained the following marks out of 150 in an examination:

60, 66, 76, 80, 94, 106, 110, 112, 120, 145.

(i) Find the median mark, *M*.

The given marks, *x*, are transformed using the formula y = x - M.

- (ii) Find the mean and the variance of the values of *y* obtained by this transformation, and deduce the mean and the standard deviation of the original marks. [7]
- (iii) State, with a reason, whether you consider that the median or the mean is a more appropriate measure of central tendency for the data. [2]
- 6. The following data was collected for seven cars, showing their engine size, *x* litres, and their fuel consumption, *y* km per litre, on a long journey.

Car	A	В	С	D	Ε	F	G	
x	0.95	1.20	1.37	1.76	2.25	2.50	2.875	
у	21.3	17.2	15.5	19.1	14.7	11.4	9.0	
$\Sigma x = 12.905,$	$\Sigma x^2 = 26.8$	951, Σ	y = 108	8·2, Σ	$y^2 = 178$	81.64,	$\Sigma xy = 183.176.$	

- (i) Calculate the equation of the regression line of x on y, expressing your answer in the form x = ay + b. [4]
- (ii) Calculate the product moment correlation coefficient between *y* and *x* and give a brief interpretation of its value. [3]
- (iii) Use the equation of the regression line to estimate the value of x when y = 12. State, with a reason, how accurate you would expect this estimate to be. [3]
- (iv) Comment on the use of the line to find values of x as y gets very small. [2]

7. The ten letters of the word ASSESSMENT are written on tiles which are arranged in order in a line. Find the number of possible distinguishable arrangements if

- (i) there are no restrictions, [2]
- (ii) all the vowels come together. [3]

The tiles are now placed in a bag and four tiles are drawn out at random. The variable X represents the number of these tiles which carry the letter 'S'.

(iii) Show that
$$P(X=0) = \frac{1}{14}$$
 and $P(X=4) = \frac{1}{210}$ [4]
Given that $P(X=1) = \frac{8}{21}$, $P(X=2) = \frac{3}{7}$ and $P(X=3) = \frac{4}{35}$,
(iv) find the expectation and the standard deviation of *X*. [6]

STATISTICS 1 (C) TEST PAPER 4 : ANSWERS AND MARK SCHEME

1.	Successive trials are independent (i) Geo $(\frac{1}{6})$: E(X) = 6 (ii) P(X > 3) = $(1-\frac{1}{6})^3 = \frac{125}{216}$	B1 B1 M1 A1	4				
2.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1 2 1	9 9 0	B1 B1 B1 M1 A1	5	
3.	(i) $E(X) = np = 11 \ge 0.76 = 8.36$ (ii) $P(X = 7) = 11C7(0.76)7(0.24)4 = 0.1$ (iii) $P(X \ge 9) = P(X = 11) + P(X = 10) + P$ $= 0.76^{11} + 11(0.76)^{10}(0.24) + 1000$	B1 M1 A1 M1 M1 A1	M1 A1				
4.	Frequency density may not be greatest in the 1000 families : 50 cm^2 , so 400 families : 2 Width of '30 - 40' = 2.5 cm, so width of ' Area of '15 - 20' = 15 cm ² , so height = 15	B2 M1 M1 A1 B1 M1		8			
5.	(i) Median = $(94 + 106) \div 2 = 100$ (ii) y values : $-40, -34, -24, -20, -6,$ E(Y) = -3.1 Var $(Y) =E(X) = -3.1 + 100 = 96.9$ V (iii) Mean better as it shows bias to lower	= 637.69 Var(X) = Var(d. = 25·3	B1 B1 B1 M1 M1 A1 B1 B1	A1	
6.	(i) $Syy = 109.177$, $Sxy = -16.298$ x - 1.84357 = -0.14928(y - 15.4571) (ii) $Sxx = 3.1038$ r = -0.885 (iii) $y = 12$ gives $x \approx 2.36$ Not near <i>n</i> is small, which reduces significance (iv) When <i>y</i> is close to 0, <i>x</i> tends to 4.15, car would travel no km on any amount	x = -0 Quite good cessarily accu e of strong co suggesting th	·149y + l negativ urate - orrelationat a 4·1	4.15 ve correlation n 5 litre	I	M1 A1 M1 A1 M1 A1 M1 A1 B1 B2	1 1 B1
7.	(i) $10! \div (4! \times 2!) = 75\ 600$ (ii) $\frac{8!}{4!} \times \frac{3!}{2!} = 5040$ put vowels as 1 group (iii) No 'S's : P(X=0) $= \frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} = \frac{1}{10}$ All 4 'S's : P(X=4) $= \frac{4}{10} \times \frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} = E(X^2) = 3\cdot 2$ Var(X) $= 3\cdot 2 - 1\cdot 6^2$	$p = 8 \text{ letters a}$ $\frac{1}{4}$ $= \frac{1}{210} (\text{iv}$	nd mix () $E(X)$	up vowels = 1·6 ie Σx×I	M1 A1 P(x=x)	; M1 M B1M1 B1; B3	/11 A1 A1 1
	$E(X^{2}) = 3 \cdot 2$ $Var(X) = 3 \cdot 2 - 1 \cdot 6^{2}$	$^{2} = 0.64$	s.d. = ()·8 N	11 A1 M1	A1 A	1 15